

Reg. No.:						

Question Paper Code: X61331

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Fifth Semester

Electrical and Electronics Engineering EC2314 – DIGITAL SIGNAL PROCESSING (Regulations 2008)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A (10×2=20 Marks)

- 1. Define BIBO stable.
- 2. State and prove the time reversal property of Z-transform.
- 3. Given a difference equation y(n) = x[n] + 3x[n-1] + 2y[n-1]. Determine the system function H(z).
- 4. Find the stability of the system whose impulse response $h(n) = \left(\frac{1}{2}\right)^n u(n)$.
- 5. List any two properties of DFT.
- 6. List the advantages of FFT algorithms.
- 7. State warping and give the necessity of prewarping.
- 8. Define the condition for stability of digital filters.
- 9. List any two special features of DSP architecture.
- 10. Give examples for fixed point processor and floating point processor.

(8)

PART – B (5×16=80 Marks)

- 11. a) i) Give two examples for static. Time variant, casual and linear systems. (8)
 - ii) Tabulate the difference between energy and power signal with examples. (8)
 - b) i) State whether the following system is linear, time varying, casual and stable $y(n) = nx^2(n)$. (8)
 - ii) State the expression for Nyquist rate? If the sampling rate is less than the Nyquist rate, what happens? Justify it with an example. (8)
- 12. a) i) Find the Z transform and its associated ROC for the following discrete time

signal
$$x[n] = \left(\frac{-1}{5}\right)^n u[n] + 5\left(\frac{1}{2}\right)^{-n} u[-n-1].$$
 (8)

ii) Evaluate the frequency response of the system described by system function

$$H(z) = \frac{1}{1 - 0.5z^{-1}}.$$
 (8)

(OR)

b) Using z-transform determine the response y[n] for $n \ge 0$ if

$$y[n] = \frac{1}{2}y[n-1] + x[n], x[n] = \left(\frac{1}{3}\right)^n u(n)y(-1) = 1.$$
 (16)

- 13. a) i) Derive the computational equation for the 8-point FFT DIT. (8)
 - ii) State and prove any five properties of DFT.

(OR)

- b) Find the X(K) for the given sequence $x(n) = \{1, 2, 3, 4, 1, 2, 3, 4\}$. (16)
- 14. a) Design and realize a digital filter using bilinear transformation for the following- specifications. Monotonic pass band and stop band -3.01 dB cutoff at $0.5~\pi$ rad magnitude down at least 15dB at ω = $0.7~5~\pi$ rad. (16)
 - b) i) Consider the causal linear shift invariant filter with system function

$$H\!\left(z\right) = \frac{1 + 0.875z^{-1}}{\left(1 + 0.2z^{-1} + 0.9z^{-2}\right)\!\left(1 - 0.7z^{-1}\right)}\,. \text{ Draw the structure using a parallel}$$

interconnection of first and second order systems. (8)

X61331 -3-

ii) Consider the following interconnection of a linear shift invariant system.

Where $x[n] = \delta[n]$

$$h_{1}[n] = \delta[n-1]$$

$$H_{2}\left(e^{jco}\right) = \begin{cases} 1 & \left|\omega\right| \le \pi / 2 \\ 0 & \pi / 2 < \left|\omega\right| \le \pi \end{cases}$$

Find the overall impulse response h[n] of the system. **(8)**

(8)

15. a) i) With a flow diagram explain the Multiply and Accumulated (MAC) unit in a digital signal processor. **(8)**

ii) Write a note on commercial processors.

(OR)

b) With examples explain the different addressing formats supported by DSP processors, for various signal processing applications. (16)